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Shock-driven implosion experiments deviate from 
hydro model predictions when the ion mean free path 
approaches the size of the implosion

Summary

E24397

• Hydrodynamic assumptions can break down during  
the shock-convergence phase of both ablatively driven  
and shock-driven inertial confinement fusion (ICF) 
implosions, leading to ion kinetic effects

• Shock-driven experiments on OMEGA and the 
National Igntition Facility (NIF) show a strong trend 
of decreasing yield over clean (YOC) with increasing 
Knudsen number (NK = mii/Rfuel) for NK > 0.1

• Ion diffusion and non-Maxwellian reduction of fusion 
reactivity are able to partially explain the results

2



Collaborators

3

V. Yu. Glebov, C. Stoeckl, W. Seka, F. J. Marshall, J. A. Delettrez,  
P. W. McKenty, M. Hohenberger, R. Betti, V. N. Goncharov, P. B. Radha,  

J. P. Knauer, and T. C. Sangster
University of Rochester 

Laboratory for Laser Energetics

H. G. Rinderknecht, F. H. Séguin, A. B. Zylstra, J. A. Frenje, H. Sio,  
M. Gatu Johnson, C. K. Li, and R. D. Petrasso

Massachusetts Institue of Technology

N. M. Hoffman, G. Kagan, H. W. Herrmann, and R. E. Olson
Los Alamos National Laboratory

P. A. Amendt, S. LePape, T. Ma, A. J. Mackinnon, J. R. Rygg, S. C. Wilks, 
L. Berzak Hopkins, D. T. Casey, O. L. Landen, J. D. Lindl, J. Pino, and H. F. Robey

Lawrence Livermore National Laboratory

S. Atzeni
Università di Roma, “La Sapienza”

O. Larroche
Commissariat à l’énergie atomique et aux énergies alternatives (CEA)

A. Nikroo
General Atomics



Exploding pushers generate kinetic conditions similar to the 
shock-convergence phase in hot-spot–ignition implosions

Motivation
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In hot-spot ignition, the shock phase sets the initial 
hot-spot conditions prior to deceleration.
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A fuel-density scan in OMEGA D3He-filled exploding 
pushers was used to isolate and study ion kinetic effects
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M. J. Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014).

These experiments attempt to identify the conditions 
under which hydro models break down.
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As tgas is decreased, mii increases from ~50 nm to 
~1000 nm and NK = mii/Rfuel increases from ~0.3 to 10
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Implosions spanned the “strongly kinetic” to “hydrodynamic-like” regimes.
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Measured DD and D3He yields are found to drop off 
sharply in the high-NK/kinetic limit
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Hydrodynamic simulations increasingly deviate  
from the data in the kinetic regime
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*Simulations by N. M. Hoffman, LANL
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simulation brings modeled yields into better agreement 
with the experiment
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Reduction of fusion reactivity because of  
non-Maxwellian tail ion loss** and ion diffusion  
are inferred to be significant.

 * N. M. Hoffman et al., Phys. Plasmas  
  22, 052707 (2015).
 ** K. Molvig et al., Phys. Rev. Lett. 109,   
  95001 (2012); B. J. Albright et al.,  
  Phys. Plasmas 20, 122705 (2013).
 † Simulations by N. M. Hoffman, LANL



For a first-principles kinetic approach, Fokker–Planck 
modeling using FPION* has been performed
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These simulations do not yet model the shell, so they do not 
account for ion diffusion across the fuel/shell interface.

 * O. Larroche, Eur. Phys. J. D 27, 131 (2003). **Simulations by O. Larroche, CEA
 † O. Larroche et al., Phys. Plasmas 23, 012701 (2016).

FPION simulations**
• Are initiated based on profiles from HYADES hydrodynamics simulations
• Model the gas region of the exploding-pusher implosion
• Show improved agreement in yield and ion temperature relative to pure hydro 

modeling and evidence of kinetic processes (e.g., counterstreaming ions) 
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Polar-direct-drive exploding pushers on the NIF  
were also studied to investigate ion kinetic effects 
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 * M. J. Rosenberg et al., Phys. Plasmas 21, 122712 (2014).
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Exploding pushers on the NIF and OMEGA show a unified 
trend of decreasing DD YOC with increasing NK
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 * Compared to HYDRA, S. Le Pape et al., Phys. Rev. Lett. 112, 225002 (2014).
 ** Compared to DRACO, M. J. Rosenberg et al., Phys. Plasmas 21, 122712 (2014).
 *** Compared to DUED, M. J. Rosenberg et al., Phys. Rev. Lett. 112, 185001 (2014).
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Shock-convergence phase of hot-spot ignition implosions  
is in a regime where kinetic effects start to become prevalent.



Future work should investigate how these shock-phase 
ion kinetic effects can impact hot-spot formation and  
the subsequent compression phase
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• These data demonstrate that ion kinetic effects are likely to be prevalent 
in the hot spot shortly after shock convergence

– mechanisms: diffusion or free streaming of thermal or suprathermal 
hot gas ions into the cold fuel? Perturbation of hydro profiles in 
initial hot spot?

• Focused experiments should aim to identify/decouple the critical 
mechanisms to provide a more-stringent test for models

– CD/3He in exploding pushers to benchmark ion diffusion models
– high-precision fusion product spectroscopy to infer tail ion loss?

• We can use exploding-pusher data to benchmark models of these 
kinetic effects as applied in hydrocodes (e.g., RIK) or in first-principles 
kinetic simulations (e.g., FPION)

• These codes can then predict the impact of these kinetic effects on the 
evolution of the hot spot in ignition-relevant implosions
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Summary/Conclusions
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Shock-driven implosion experiments deviate from 
hydro model predictions when the ion mean free path 
approaches the size of the implosion

• Hydrodynamic assumptions can break down during  
the shock-convergence phase of both ablatively driven  
and shock-driven inertial confinement fusion (ICF) 
implosions, leading to ion kinetic effects

• Shock-driven experiments on OMEGA and the 
National Igntition Facility (NIF) show a strong trend 
of decreasing yield over clean (YOC) with increasing 
Knudsen number (NK = mii/Rfuel) for NK > 0.1

• Ion diffusion and non-Maxwellian reduction of fusion 
reactivity are able to partially explain the results
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To better understand ion kinetic effects, penumbral imaging 
of DD and D3He reactions was used to infer burn profiles
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M. J. Rosenberg et al., Phys. Plasmas 22, 062702 (2015).
Penumbral imaging technique:
F. H. Séguin et al. Rev. Sci. Instrum. 75, 3520 (2004);
F. H. Séguin et al. Phys. Plasmas 13, 082704 (2006).
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To better understand ion kinetic effects, penumbral imaging 
of DD and D3He reactions was used to infer burn profiles

E24402a

17

Surface brightness profiles of proton emission (forward fit to data)
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In the “kinetic” regime, measured spatial burn profiles are 
centrally peaked, in stark contrast to a pure-hydro model
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*Simulations by P. Amendt, LLNL
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Inclusion of ion diffusion recovers the centrally peaked 
burn profiles that were observed experimentally

E24404

19

 * R. W. Schunk, Rev. Geophys. Space Phys. 15, 429 (1977);
   Simulations by P. Amendt, LLNL
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The first kinetic (FPION) simulations of the gas region, 
initiated from HYADES profiles, show improvement  
over hydro modeling
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These simulations do not yet model the shell, 
so they do not yet include ion diffusion.

  Simulations by O. Larroche, CEA


